

Visualizing Spatial
Relationships

Maps are a subcategory of visualization that have the added benefit of
being incredibly intuitive. Even as a kid, I could read them. I remember
sitting in the passenger seat of my dad’s car and sounding off direc-
tions as I read the fantastically big unfolded map laid out in front of
me. An Australian lady with a robotic yet calming voice spits out direc-
tions from a small box on the dash nowadays.

In any case, maps are a great way to understand your data. They are
scaled down versions of the physical world, and they’re everywhere. In
this chapter you dive into several spatial datasets, looking for patterns
over space and time. You create some basic maps in R and then jump
to more advanced mapping with Python and SVG. Finally, you round it
up with interactive and animated maps in ActionScript and Flash.

8

c h a P te r 8 : V is uali z ing Spatial Relati o ns h ips 272

What to Look For
You read maps much the same way that you read statistical graphics.
When you look at specific locations on a map, you still look for cluster-
ing in specific regions or for example, compare one region to the rest of
a country. The difference is that instead of x- and y-coordinates, you deal
with latitude and longitude. The coordinates on a map actually relate to
each other in the same way that one city relates to another. Point A and
Point B are a specific number of miles away, and it takes an estimated
time to get there. In contrast, the distance on a dot plot is abstract and
(usually) has no units.

This difference brings with it a lot of subtleties to maps and cartography.
There’s a reason The New York Times has a group of people in its graphics
department who exclusively design maps. You need to make sure all your
locations are placed correctly, colors make sense, labels don’t obscure
locations, and that the right projection is used.

This chapter covers only a handful of the basics. These can actually take
you pretty far in terms of finding stories in your data, but keep in mind
there’s a whole other level of awesome that you can strive for.

Things can get especially interesting when you introduce time. One map
represents a slice in time, but you can represent multiple slices in time
with several maps. You can also animate changes to, say, watch growth (or
decline) of a business across a geographic region. Bursts in specific areas
become obvious, and if the map is interactive, readers can easily focus
in on their area to see how things have changed. You don’t get the same
effect with bar graphs or dot plots, but with maps, the data can become
instantly personal.

Specific Locations
A list of locations is the easiest type of spatial data you’ll come across. You
have the latitude and longitude for a bunch places, and you want to map
them. Maybe you want to show where events, such as crime, occurred, or
you want to find areas where points are clustered. This is straightforward
to do, and there are a lot of ways to do it.

Sp ecific Locations 273

On the web, the most common way to map points is via Google or Microsoft
Maps. Using their mapping APIs, you can have an interactive map that you
can zoom and pan in no time with just a few lines of JavaScript. Tons of
tutorials and excellent documentation are online on how to make use of
these APIs, so I’ll leave that to you.

However, there is a downside. You can only customize the maps so much,
and in the end you’ll almost always end up with something that still looks
like a Google or Microsoft map. I’m not saying they’re ugly, but when you’re
developing an application or designing a graphic that fits into a publication,
it’s often more fitting to have a map that matches your design scheme.
There are sometimes ways to get around these barriers, but it’s not worth
the effort if you can just do the same thing but better, with a different tool.

Find Latitude and Longitude
Before you do any mapping, consider the available data and the data that
you actually need. If you don’t have the data you need, then there’s nothing
to visualize, right? In most practical applications, you need latitude and
longitude to map points, and most datasets don’t come like that. Instead,
you most likely will have a list of addresses.

As much as you might want to, you can’t just plug in street names and postal
codes and expect a pretty map. You have to get latitude and longitude first,
and for that, turn to geocoding. Basically, you take an address, give it to a
service, the service queries its database for matching addresses, and then
you get latitude and longitude for where the service thinks your address is
located in the world.

As for which service to use, well, there are many. If you have only a few
locations to geocode, it’s easy to just go to a website and manually enter
them. Geocoder.us is a good free option for that. If you don’t need your
locations to be exact, you can try Pierre Gorissen’s Google Maps Latitude
Longitude Popup. It’s a simple Google Maps interface that spits out latitude
and longitude for anywhere you click on the map.

If, however, you have a lot of locations to geocode, then you should do it
programmatically. You don’t need to waste your time copying and pasting.
Google, Yahoo!, Geocoder.us, and Mediawiki all provide APIs for gecoding;
and Geopy, a geocoding toolbox for Python, wraps them all up into one
package.

�
Google and
Microsoft provide
super straightfor-
ward tutorials that
start with their
mapping APIs, so
be sure to check
those out if you’re
interested in taking
advantage of some
basic mapping
functionality.

note

c h a P te r 8 : V is uali z ing Spatial Relati o ns h ips 274

Useful Geocoding Tools

Geocoder.us, aa http://geocoder.us—Provides a straightforward
interface to copy and paste location to get latitude and longitude.
Also provides an API.
Latitude Longitude Popup, aa www.gorissen.info/Pierre/maps/—Google
Maps’ mashup. Click a location on the map, and it gives you latitude
and longitude.
Geopy, aa http://code.google.com/p/geopy/—Geocoding toolbox for
Python. Wraps up multiple geocoding APIs into a single package.

Visit the Geopy project page for instructions on how to install the package.
There are also lots of straightforward examples on how to start. The fol-
lowing example assumes you have already installed the package on your
computer.

After you install Geopy, download location data at http://book.flowingdata
.com/ch08/geocode/costcos-limited.csv. This is a CSV file that contains the
address of every Costco warehouse in the United States, but it doesn’t
have latitude or longitude coordinates. That’s up to you.

Open a new file and save it as geocode-locations.py. As usual, import the
packages that you need for the rest of the script.

from geopy import geocoders

import csv

You also need an API key for each service you want to use. For the pur-
poses of this example, you only need one from Google.

Store your API key in a variable named g_api_key, and then use it when you
instantiate the geocoder.

g_api_key = ‘INSERT_YOUR_API_KEY_HERE’

g = geocoders.Google(g_api_key)

Load the costcos-limited.csv data file, and then loop. For each row, you
piece together the full address and then plug it in for geocoding.

costcos = csv.reader(open(‘costcos-limited.csv’), delimiter=’,’)

next(costcos) # Skip header

Print header

�
Visit http://code
.google.com/apis/

maps/signup.html
to sign up for a
free API key for
the Google Maps
API. It’s straight-
forward and takes
only a couple of
minutes.

note

Sp ecific Locations 275

print “Address,City,State,Zip Code,Latitude,Longitude”

for row in costcos:

 full_addy = row[1] + “,” + row[2] + “,” + row[3] + “,” + row[4]

 place, (lat, lng) = list(g.geocode(full_addy, exactly_one=False))[0]

 print full_addy + “,” + str(lat) + “,” + str(lng)

That’s it. Run the Python script, and save the output as costcos-geocoded.csv.
Here’s what the first few lines of the data looks like:

Address,City,State,Zip Code,Latitude,Longitude

1205 N. Memorial Parkway,Huntsville,Alabama,35801-5930,34.7430949,-86

.6009553

3650 Galleria Circle,Hoover,Alabama,35244-2346,33.377649,-86.81242

8251 Eastchase Parkway,Montgomery,Alabama,36117,32.363889,-86.150884

5225 Commercial Boulevard,Juneau,Alaska,99801-7210,58.3592,-134.483

330 West Dimond Blvd,Anchorage,Alaska,99515-1950,61.143266,-149.884217

...

Pretty cool. By some stroke of luck, latitude and longitude coordinates are
found for every address. That usually doesn’t happen. If you do run into
that problem, you should add error checking at the second to last line of
the preceding script.

 try:

 place, (lat, lng) = list(g.geocode(full_addy, exactly_one=False))

[0]

 print full_addy + “,” + str(lat) + “,” + str(lng)

 except:

 print full_addy + “,NULL,NULL”

This tries to find the latitude and longitude coordinates, and if it fails, it
prints the row with the address and null coordinate values. Run the Python
script and save the output as a file, and you can go back and look for the
nulls. You can either try a different service for the missing addresses via
Geopy, or you can just manually enter the addresses in Geocoder.us.

Just Points
Now that you have points with latitude and longitude, you can map them.
The straightforward route is to do the computer equivalent of putting
pushpins in a paper map on a billboard. As shown in the framework in Fig-
ure 8-1, you place a marker for each location on the map.

c h a P te r 8 : V is uali z ing Spatial Relati o ns h ips 276

Figure 8-1 ​ Mapping points framework

Although a simple concept, you can see features in the data such as clus-
tering, spread, and outliers.

Map with Dots

R, although limited in mapping functionality, makes placing dots on a map
easy. The maps package does most of the work. Go ahead and install it
via the Package Installer, or use install.packages() in the console. When
installed, load it into the workspace.

library(maps)

Next step: Load the data. Feel free to use the Costco locations that you just
geocoded, or for convenience, I’ve put the processed dataset online, so you
can load it directly from the URL.

costcos <-

 read.csv(“http://book.flowingdata.com/ch08/geocode/costcos-geocoded

 .csv”, sep=”,”)

Sp ecific Locations 277

Now on to mapping. When you create your maps, it’s useful to think of
them as layers (regardless of the software in use). The bottom layer is
usually the base map that shows geographical boundaries, and then you
place data layers on top of that. In this case the bottom layer is a map of
the United States, and the second layer is Costco locations. Here’s how to
make the first layer, as shown in Figure 8-2.

map(database=”state”)

Figure 8-2 ​ Plain map of the United States

The second layer, or Costco’s, are then mapped with the symbols() func-
tion. This is the same function you used to make the bubble plots in Chap-
ter 6, “Visualizing Relationships,” and you use it in the same way, except
you pass latitude and longitude instead of x- and y-coordinates. Also set
add to TRUE to indicate that you want symbols to be added to the map rather
than creating a new plot.

symbols(costcos$Longitude, costcos$Latitude,

 circles=rep(1, length(costcos$Longitude)), inches=0.05, add=TRUE)

Figure 8-3 shows the results. All the circles are the same size because
you set circles to an array of ones with the length equal to the number
of locations. You also set inches to 0.05, which sizes the circles to that
number. If you want smaller markers, all you need to do is decrease that
value.

c h a P te r 8 : V is uali z ing Spatial Relati o ns h ips 278

Figure 8-3 ​ Map of Costco locations

As before, you can change the colors of both the map and the circles so
that the locations stand out and boundary lines sit in the background, as
shown in Figure 8-4. Now change the dots to a nice Costco red and the
state boundaries to a light gray.

map(database=”state”, col=”#cccccc”)

symbols(costcos$Longitude, costcos$Latitude, bg=”#e2373f”, fg=”#ffffff”,

 lwd=0.5, circles=rep(1, length(costcos$Longitude)),

 inches=0.05, add=TRUE)

Figure 8-4 ​ Using color with mapped locations

Sp ecific Locations 279

In Figure 8-3, the unfilled circles and the map were all the same color and
line width, so everything blended together, but with the right colors, you
can make the data sit front and center.

It’s not bad for a few lines of code. Costco has clearly focused on opening
locations on the coasts with clusters in southern and northern California,
northwest Washington, and in the northeast of the country.

However, there is a glaring omission here. Well, two of them actually.
Where are Alaska and Hawaii? They’re part of the United States, too, but
are nowhere to be found even though you use the “state” database with
map(). The two states are actually in the “world” database, so if you want to
see Costco locations in Alaska in Hawaii, you need to map the entire world,
as shown in Figure 8-5.

map(database=”world”, col=”#cccccc”)

symbols(costcos$Longitude, costcos$Latitude, bg=”#e2373f”, fg=”#ffffff”,

 lwd=0.3, circles=rep(1, length(costcos$Longitude)),

 inches=0.03, add=TRUE)

Figure 8-5 ​ World map of Costco locations

It’s a waste of space, I know. There are options that you can mess around
with, which you can find in the documentation, but you can edit the rest in
Illustrator to zoom in on the United States or remove the other countries
from view.

�

Tip

With R, when in
doubt, always
jump to the
documentation for
the function or
package you’re
stuck on by
preceding the
name with a
question mark.

c h a P te r 8 : V is uali z ing Spatial Relati o ns h ips 280

Taking the map in the opposite direction, say you want to only map Costco
locations for a few states. You can do that with the region argument.

map(database=”state”, region=c(“California”, “Nevada”, “Oregon”,

 “Washington”), col=”#cccccc”)

symbols(costcos$Longitude, costcos$Latitude, bg=”#e2373f”, fg=”#ffffff”,

 lwd=0.5, circles=rep(1, length(costcos$Longitude)), inches=0.05,

 add=TRUE)

As shown in Figure 8-6, you create a bottom layer with California, Nevada,
Oregon, and Mexico. Then you create the data layer on top of that. Some
dots are not in any of those states, but they’re in the plotting region, so
they still appear. Again, it’s trivial to remove those in your favorite vector
editing software.

Map with Lines

In some cases it could be useful to connect the dots on your map if the
order of the points have any relevance. With online location services such
as Foursquare growing in popularity, location traces aren’t all that rare.
An easy way to draw lines is, well, with the lines() function. To demon-
strate, look at locations I traveled during my seven days and nights as a
spy for the fake government of Fakesville. Start with loading the data (as
usual) and drawing a base world map.

faketrace <-

 read.csv(“http://book.flowingdata.com/ch08/points/fake-trace.txt”,

 sep=”\t”)

map(database=”world”, col=”#cccccc”)

Take a look at the data frame by entering faketrace in your R console. You
see that it’s just two columns for latitude and longitude and eight data
points. You can assume that the points are already in the order that I trav-
eled during those long seven nights.

 latitude longitude

1 46.31658 3.515625

2 61.27023 69.609375

3 34.30714 105.468750

4 -26.11599 122.695313

5 -30.14513 22.851563

6 -35.17381 -63.632813

7 21.28937 -99.492188

8 36.17336 -115.180664

Sp ecific Locations 281

Figure 8-6 ​ Costco locations in selected states

c h a P te r 8 : V is uali z ing Spatial Relati o ns h ips 282

Draw the lines by simply plugging in the two columns into lines(). Also
specify color (col) and line width (lwd).

lines(faketrace$longitude, faketrace$latitude, col=”#bb4cd4”, lwd=2)

Now also add dots, exactly like you just did with the Costco locations, for
the graphic in Figure 8-7.

symbols(faketrace$longitude, faketrace$latitude, lwd=1, bg=”#bb4cd4”,

fg=”#ffffff”, circles=rep(1, length(faketrace$longitude)), inches=0.05,

add=TRUE)

Figure 8-7 ​ Drawing a location trace

After those seven days and nights as a spy for the Fakesville government, I
decided it wasn’t for me. It’s just not as glamorous as James Bond makes
it out to be. However, I did make connections in all the countries I visited.
It could be interesting to draw lines from my location to all the others, as
shown in Figure 8-8.

map(database=”world”, col=”#cccccc”)

for (i in 2:length(faketrace$longitude)-1) {

 lngs <- c(faketrace$longitude[8], faketrace$longitude[i])

 lats <- c(faketrace$latitude[8], faketrace$latitude[i])

 lines(lngs, lats, col=”#bb4cd4”, lwd=2)

}

Sp ecific Locations 283

Figure 8-8 ​ Drawing worldwide connections

After you create the base map, you can loop through each point and draw a
line from the last point in the data frame to every other location. This isn’t
incredibly informative, but maybe you can find a good use for it. The point
here is that you can draw a map and then use R’s other graphics functions
to draw whatever you want using latitude and longitude coordinates.

By the way, I wasn’t actually a spy for Fakesville. I was just kidding
about that.

Scaled Points
Switching gears back to real data and a more interesting topic than my
fake spy escapades, more often than not, you don’t just have locations. You
also have another value attached to locations such as sales for a business
or city population. You can still map with points, but you can take the prin-
ciples of the bubble plot and use it on a map.

I don’t have to explain how bubbles should be sized by area and not radius
again, right? Okay, cool.

Map with Bubbles

In this example, look at adolescent fertility rate as reported by the
United Nations Human Development Report—that is, the number of
births per 1,000 women aged 15 to 19 in 2008. The geo-coordinates were

c h a P te r 8 : V is uali z ing Spatial Relati o ns h ips 284

provided by GeoCommons. You want to size bubbles in proportion to
these rates.

The code is almost the same as when you mapped Costco locations, but
remember you just passed a vector of ones for circle size in the symbols()
function. Instead, we use the sqrt() of the rates to indicate size.

fertility <-

 read.csv(“http://book.flowingdata.com/ch08/points/adol-fertility.csv”)

map(‘world’, fill = FALSE, col = “#cccccc”)

symbols(fertility$longitude, fertility$latitude,

 circles=sqrt(fertility$ad_fert_rate), add=TRUE,

 inches=0.15, bg=”#93ceef”, fg=”#ffffff”)

Figure 8-9 ​ Adolescent fertility rate worldwide

Figure 8-9 shows the output. Immediately, you should see that African
countries tend to have the highest adolescent fertility rates, whereas
European countries have relatively lower rates. From the graphic alone,
it’s not clear what value each circle represents because there is no leg-
end. A quick look with summary() in R can tell you more.

summary(fertility$ad_fert_rate)

 Min. 1st Qu. Median Mean 3rd Qu. Max. NA’s

 3.20 16.20 39.00 52.89 78.20 201.40 1.00

R egions 285

That’s fine for us, an audience of one, but you need to explain more
if you want others, who haven’t looked at the data, to understand the
graphic. You can add annotation to highlight countries with the highest
and lowest fertility rates, point out the country where most readers will
be from (in this case, the United States), and provide a lead-in to set
up readers for what they’re going to look at. Figure 8-10 shows these
changes.

Figure 8-10 ​ Rates more clearly explained for a wider audience

Regions
Mapping points can take you only so far because they represent only single
locations. Counties, states, countries, and continents are entire regions
with boundaries, and geographic data is usually aggregated in this way.
For example, it’s much easier to find health data for a state or a country
than it is for individual patients or hospitals. This is usually done for pri-
vacy, whereas other times aggregated data is just easier to distribute. In

c h a P te r 8 : V is uali z ing Spatial Relati o ns h ips 286

any case, this is usually how you’re going to use your spatial data, so now
learn to visualize it.

Color by Data
Choropleth maps are the most common way to map regional data.
Based on some metric, regions are colored following a color scale that
you define, as shown in Figure 8-11. The areas and location are already
defined, so your job is to decide the appropriate color scales to use.

Figure 8-11 ​ Choropleth map framework

As touched on in a previous chapter, Cynthia Brewer’s ColorBrewer is a
great way to pick your colors, or at least a place to start to design a color
palette. If you have continuous data, you might want a similarly continuous
color scale that goes from light to dark, but all with the same hue (or mul-
tiple similar hues), as shown in Figure 8-12.

R egions 287

A diverging color scheme, as shown in Figure 8-13, might be good if your
data has a two-sided quality to it, such as good and bad or above and
below a threshold.

Figure 8-12 ​ Sequential color schemes with ColorBrewer

Figure 8-13 ​ Diverging color schemes with ColorBrewer

c h a P te r 8 : V is uali z ing Spatial Relati o ns h ips 288

Finally, if your data is qualitative with classes or categories, then you
might want a unique color for each (Figure 8-14).

Figure 8-14 ​ Qualitative color scheme with ColorBrewer

When you have your color scheme, you have two more things to do. The
first is to decide how the colors you picked match up to the data range, and
the second is to assign colors to each region based on your choice. You can
do both with Python and Scalable Vector Graphics (SVG) in the following
examples.

Map Counties

The U.S. Bureau of Labor Statistics provides county-level unemployment
data every month. You can download the most recent rates or go back
several years from its site. However, the data browser it provides is kind of
outdated and roundabout, so for the sake of simplicity (and in case the BLS
site changes), you can download the data at http://book.flowingdata.com/
ch08/regions/unemployment-aug2010.txt. There are six columns. The first is a
code specific to the Bureau of Labor Statistics. The next two together are
a unique id specifying county. The fourth and fifth columns are the county
name and month the rate is an estimate of, respectively. The last column

R egions 289

is the estimated percentage of people in the county who are unemployed.
For the purposes of this example, you care only about the county id (that is,
FIPS codes) and the rate.

Now for the map. In previous examples, you generated base maps in R, but
now you can use Python and SVG to do this. The former is to process the
data, and the latter is for the map itself. You don’t need to start completely
from scratch, though. You can get a blank map from Wikimedia Commons
found here: http://commons.wikimedia.org/wiki/File:USA_Counties_with_FIPS_
and_names.svg, as shown in Figure 8-15. The page links to the map in four
sizes in PNG format and then one in SVG. You want the SVG one. Download
the SVG file and save it as counties.svg, in the same directory that you save
the unemployment data.

Figure 8-15 ​ Blank U.S. county map from Wikimedia Commons

The important thing here, if you’re not familiar with SVG, is that it’s actu-
ally an XML file. It’s text with tags, and you can edit it in a text editor like
you would an HTML file. The browser or image viewer reads the XML, and
the XML tells the browser what to show, such as the colors to use and
shapes to draw.

c h a P te r 8 : V is uali z ing Spatial Relati o ns h ips 290

To drive the point home, open the map SVG file in a text editor to see what
you’re dealing with. It’s mostly SVG declarations and boiler plate stuff,
which you don’t totally care about right now.

Scroll down some more to start to see some <path> tags, as shown in
Figure 8-16. All those numbers in a single tag specify the boundaries of a
county. You’re not going to touch those. You’re interested in changing the
fill color of each county to match the corresponding unemployment rate.
To do that, you need to edit the style in the path.

Figure 8-16 ​ Paths specified in SVG file

Notice how each <path> starts with style? Those who have written CSS can
immediately recognize this. There is a fill attribute followed by a hexa-
decimal color, so if you change that in the SVG file, you change the color
of the output image. You could edit each one manually, but there are more
than 3,000 counties. That would take way too long. Instead, come back to
your old friend Beautiful Soup, the Python package that makes parsing
XML and HTML relatively easy.

Open a blank file in the same directory as your SVG map and unemploy-
ment data. Save it as colorize_svg.py. You need to import the CSV data file

�

Tip

�

SVG files are
XML files, which
are easy to change
in a text editor.
This also means
that you can parse
the SVG code to
make changes
programmatically.

�SVG files are
XML files, which
are easy to change
in a text editor.
This also means
that you can parse
the SVG code to
make changes
programmatically.

R egions 291

and parse the SVG file with Beautiful Soup, so start by importing the nec-
essary packages.

import csv

from BeautifulSoup import BeautifulSoup

Then open the CSV file and store it so that you can iterate through the
rows using csv.reader(). Note that the “r” in the open() function just means
that you want to open the file to read its contents, as opposed to writing
new rows to it.

reader = csv.reader(open(‘unemployment-aug2010.txt’, ‘r’), delimiter=”,”)

Now also load the blank SVG county map.

svg = open(‘counties.svg’, ‘r’).read()

Cool, you loaded everything you need to create a choropleth map. The
challenge at this point is that you need to somehow link the data to the
SVG. What is the commonality between the two? I’ll give you a hint. It
has to do with each county’s unique id, and I mentioned it earlier. If you
guessed FIPS codes, then you are correct!

Each path in the SVG file has a unique id, which happens to be the com-
bined FIPS state and county FIPS code. Each row in the unemployment
data has the state and county FIPS codes, too, but they’re separate. For
example, the state FIPS code for Autauga County, Alabama, is 01, and its
county FIPS code is 001. The path id in the SVG are those two combined:
01001.

You need to store the unemployment data so that you can retrieve each
county’s rate by FIPS code, as we iterate through each path. If you start to
become confused, stay with me; it’ll be clearer with actual code. But the
main point here is that the FIPS codes are the common bond between your
SVG and CSV, and you can use that to your advantage.

To store the unemployment data so that it’s easily accessible by FIPS code
later, use a construct in Python called a dictionary. It enables you to store
and retrieve values by a keyword. In this case, your keyword is a combined
state and county FIPS code, as shown in the following code.

unemployment = {}

min_value = 100; max_value = 0

for row in reader:

�

Tip

Paths in SVG files,
geographic ones in
particular, usually
have a unique id.
It’s not always
FIPS code, but the
same rules apply.

c h a P te r 8 : V is uali z ing Spatial Relati o ns h ips 292

 try:

 full_fips = row[1] + row[2]

 rate = float(row[8].strip())

 unemployment[full_fips] = rate

 except:

 pass

Next parse the SVG file with BeautifulSoup. Most tags have an opening and
closing tag, but there are a couple of self-closing tags in there, which you
need to specify. Then use the findAll() function to retrieve all the paths in
the map.

soup = BeautifulSoup(svg, selfClosingTags=[‘defs’,’sodipodi:namedview’])

paths = soup.findAll(‘path’)

Then store the colors, which I got from ColorBrewer, in a Python list. This
is a sequential color scheme with multiple hues ranging from purple to red.

colors = [“#F1EEF6”, “#D4B9DA”, “#C994C7”, “#DF65B0”, “#DD1C77”, “#980043”]

You’re getting close to the climax. Like I said earlier, you’re going to
change the style attribute for each path in the SVG. You’re just interested
in fill color, but to make things easier, you can replace the entire style
instead of parsing to replace only the color. I changed the hexadecimal
value after stroke to #ffffff, which is white. This changes the borders to
white instead of the current gray.

path_style = ‘font-size:12px;fill-rule:nonzero;stroke:#fffff;stroke-

opacity:1;stroke-width:0.1;stroke-miterlimit:4;stroke-

dasharray:none;stroke-linecap:butt;marker-start:none;stroke-

linejoin:bevel;fill:’

I also moved fill to the end and left the value blank because that’s the
part that depends on each county’s unemployment rate.

Finally, you’re ready to change some colors! You can iterate through each
path (except for state boundary lines and the separator for Hawaii and
Alaska) and color accordingly. If the unemployment rate is greater than 10,
use a darker shade, and anything less than 2 has the lightest shade.

for p in paths:

 if p[‘id’] not in [“State_Lines”, “separator”]:

 # pass

R egions 293

 try:

 rate = unemployment[p[‘id’]]

 except:

 continue

 if rate > 10:

 color_class = 5

 elif rate > 8:

 color_class = 4

 elif rate > 6:

 color_class = 3

 elif rate > 4:

 color_class = 2

 elif rate > 2:

 color_class = 1

 else:

 color_class = 0

 color = colors[color_class]

 p[‘style’] = path_style + color

The last step is to print out the SVG file with prettify(). The function con-
verts your soup to a string that your browser can interpret.

print soup.prettify()

Now all that’s left to do is run the Python script and save the output as a
new SVG file named, say, colored_map.svg (Figure 8-17).

Figure 8-17 ​ Running Python script and saving output as a
new SVG file

P You can grab
the script in its
entirety here:
http://book

.flowingdata.com/

ch08/regions/

colorize_svg

.py.txt

c h a P te r 8 : V is uali z ing Spatial Relati o ns h ips 294

Open your brand spanking new choropleth map in Illustrator or a modern
browser such as Firefox, Safari, or Chrome to see the fruits of your labor,
as shown in Figure 8-18. It’s easy to see now where in the country there
were higher unemployment rates during August 2010. Obviously a lot of
the west coast and much of the southeast had higher rates, as did Alaska
and Michigan. There are a lot of counties in middle America with relatively
lower unemployment rates.

With the hard part of this exercise done, you can customize your map to
your heart’s content. You can edit the SVG file in Illustrator, change border
colors and sizes, and add annotation to make it a complete graphic for a
larger audience. (Hint: It still needs a legend.)

Figure 8-18 ​ Choropleth map showing unemployment rates

The best part is that the code is reusable, and you can apply it to other
datasets that use the FIPS code. Or even with this same dataset, you can
mess around with color scheme to design a map that fits with the theme of
your data.

Depending on your data, you can also change the thresholds for how to color
each region. The examples so far used equal thresholds where regions

R egions 295

were colored with six shades, and every 2 percentage points was a new
class. Every county with an unemployment rate greater than 10 percent was
one class; then counties with rates between 8 and 10, then 6 and 8, and so
forth. Another common way to define thresholds is by quartiles, where you
use four colors, and each color represents a quarter of the regions.

For example, the lower, middle, and upper quartiles for these unemploy-
ment rates are 6.9, 8.7, and 10.8 percent, respectively. This means that
a quarter of the counties have rates below 6.9 percent, another quarter
between 6.9 and 8.7, one between 8.7 and 10.8, and the last quarter is
greater than 10.8 percent. To do this, change the colors list in your script
to something like the following. It’s a purple color scheme, with one shade
per quarter.

colors = [“#f2f0f7”, “#cbc9e2”, “#9e9ac8”, “#6a51a3”]

Then modify the color conditions in the for loop, using the preceding
quartiles.

 if rate > 10.8:

 color_class = 3

 elif rate > 8.7:

 color_class = 2

 elif rate > 6.9:

 color_class = 1

 else:

 color_class = 0

Run the script and save like before, and you get Figure 8-19. Notice how
there are more counties colored lightly.

To increase the usability of your code, you can calculate quartiles pro-
grammatically instead of hard-coding them. This is straightforward in
Python. You store a list of your values, sort them from least to great-
est, and find the values at the one-quarter, one-half, and three-quarters
marks. More concretely, as it pertains to this example, you can modify the
first loop in colorize_svg.py to store just unemployment rates.

unemployment = {}

rates_only = [] # To calculate quartiles

min_value = 100; max_value = 0; past_header = False

for row in reader:

 if not past_header:

c h a P te r 8 : V is uali z ing Spatial Relati o ns h ips 296

 past_header = True

 continue

 try:

 full_fips = row[1] + row[2]

 rate = float(row[5].strip())

 unemployment[full_fips] = rate

 rates_only.append(rate)

 except:

 pass

Then you can sort the array, and find the quartiles.

Quartiles

rates_only.sort()

q1_index = int(0.25 * len(rates_only))

q1 = rates_only[q1_index] # 6.9

q2_index = int(0.5 * len(rates_only))

q2 = rates_only[q2_index] # 8.7

q3_index = int(0.75 * len(rates_only))

q3 = rates_only[q3_index] # 10.8

Figure 8-19 ​ Unemployment rates divided by quartiles

R egions 297

Instead of hard-coding the values 6.9, 8.7, and 10.8 in your code, you can
replace those values with q1, q2, and q3, respectively. The advantage of cal-
culating the values programmatically is that you can reuse the code with a
different dataset just by changing the CSV file.

Which color scale you choose depends on that data you have and what
message you want to convey. For this particular dataset, I prefer the lin-
ear scale because it represents the distribution better and highlights the
relatively high unemployment rates across the country. Working from Fig-
ure 8-18, you can add a legend, a title, and a lead-in paragraph for a more
finalized graphic, as shown in Figure 8-20.

Figure 8-20 ​ Finished map with title, lead-in, and legend

c h a P te r 8 : V is uali z ing Spatial Relati o ns h ips 298

Map Countries

The process to color counties in the previous example isn’t exclusive to
these regions. You can use the same steps to color states or countries. All
you need is an SVG file with unique ids for each region you want to color
(which are easily accessible on Wikipedia) and data with ids to match. Now
try this out with open data from the World Bank.

Look at percentages of urban populations with access to an improved water
source, by country, in 2008. You can download the Excel file from the World
Bank data site here: http://data.worldbank.org/indicator/SH.H2O.SAFE.UR.ZS/
countries. For convenience, you can also download the stripped down data
as a CSV file here: Full URL is: http://book.flowingdata.com/ch08/worldmap/
water-source1.txt. There are some countries with missing data, which is
common with country-level data. I’ve removed those rows from the CSV file.

There are seven columns. The first is the country name; the second is a
country code (could this be your unique id?); and the last five columns are
percentages for 1990 to 2008.

For the base map, again go to Wikipedia. You can find a lot of versions when
you search for the SVG world map, but use the one found here: http://
en.wikipedia.org/wiki/File:BlankMap-World6.svg. Download the full resolution
SVG file, and save it in the same directory as your data. As shown in Fig-
ure 8-21, it’s a blank world map, colored gray with white borders.

Figure 8-21  Blank world map

�World Bank
is one of the
most complete
resources for
country-specific
demographic
data. I usually
go here first.

Tip

R egions 299

Open the SVG file in a text editor. It is of course all text formatted as
XML, but it’s formatted slightly differently than your counties example.
Paths don’t have useful ids and the style attribute is not used. The paths
do, however, have classes that look like country codes. They have only
two letters, though. The country codes used in the World Bank data have
three letters.

According to World Bank documentation, it uses ISO 3166-1 alpha 3 codes.
The SVG file from Wikipedia, on the other hand, uses ISO 3166-1 alpha 2
codes. The names are horrible, I know, but don’t worry; you don’t have to
remember that. All you need to know is that Wikipedia provides a conver-
sion chart at http://en.wikipedia.org/wiki/ISO_3166-1. I copied and pasted
the table into Excel and then saved the important bits as a text file. It has
one column for the alpha 2 and another for the alpha 3. Download it here:
http://book.flowingdata.com/ch08/worldmap/country-codes.txt. Use this
chart to switch between the two codes.

As for styling each country, take a slightly different route to do that, too.
Instead of changing attributes directly in the path tags, use CSS outside of
the paths to color the regions. Now jump right in.

Create a file named generate_css.py in the same directory as the SVG and
CSV files. Again, import the CSV package to load the data in the CSV files
with the country codes and water access percentages.

import csv

codereader = csv.reader(open(‘country-codes.txt’, ‘r’), delimiter=”\t”)

waterreader = csv.reader(open(‘water-source1.txt’, ‘r’), delimiter=”\t”)

Then store the country codes so that it’s easy to switch from alpha 3 to
alpha 2.

alpha3to2 = {}

i = 0

next(codereader)

for row in codereader:

 alpha3to2[row[1]] = row[0]

This stores the codes in a Python dictionary where alpha 3 is the key and
alpha 2 is the value.

c h a P te r 8 : V is uali z ing Spatial Relati o ns h ips 300

Now like in your previous example, iterate through each row of the water
data and assign a color based on the value for the current country.

i = 0

next(waterreader)

for row in waterreader:

 if row[1] in alpha3to2 and row[6]:

 alpha2 = alpha3to2[row[1]].lower()

 pct = int(row[6])

 if pct == 100:

 fill = “#08589E”

 elif pct > 90:

 fill = “#08589E”

 elif pct > 80:

 fill = “#4EB3D3”

 elif pct > 70:

 fill = “#7BCCC4”

 elif pct > 60:

 fill = “#A8DDB5”

 elif pct > 50:

 fill = “#CCEBC5”

 else:

 fill = “#EFF3FF”

 print ‘.’ + alpha2 + ‘ { fill: ‘ + fill + ‘ }’

 i += 1

This part of the script executes the following steps:

1.	 Skip the header of the CSV.

2.	 It starts the loop to iterate over water data.

3.	 If there is a corresponding alpha 2 code to the alpha 3 from the CSV,
and there is data available for the country in 2008, it finds the matching
alpha 2.

4.	 Based on the percentage, an appropriate fill color is chosen.

5.	 A line of CSS is printed for each row of data.

Run generate_css.py and save the output as style.css. The first few rows of
the CSS will look like this:

.af { fill: #7BCCC4 }

.al { fill: #08589E }

R egions 301

.dz { fill: #4EB3D3 }

.ad { fill: #08589E }

.ao { fill: #CCEBC5 }

.ag { fill: #08589E }

.ar { fill: #08589E }

.am { fill: #08589E }

.aw { fill: #08589E }

.au { fill: #08589E }

...

This is standard CSS. The first row, for example, changes the fill color of
all paths with class .af to #7BCCC4.

Open style.css in your text editor and copy all the contents. Then open
the SVG map and paste the contents at approximately line 135, below the
brackets for .oceanxx. You just created a choropleth map of the world col-
ored by the percentage of population with access to an improved water
source, as shown in Figure 8-22. The darkest blue indicates 100 percent,
and the lightest shades of green indicate lower percentages. Countries
that are still gray indicate countries where data was not available.

Figure 8-22 ​ Choropleth world map showing access to improved water source

c h a P te r 8 : V is uali z ing Spatial Relati o ns h ips 302

The best part is that you can now download almost any dataset from the
World Bank (and there are a lot of them) and create a choropleth map
fairly quickly just by changing a few lines of code. To spruce up the graphic
in Figure 8-22, again, you can open the SVG file in Illustrator and edit away.
Mainly, the map needs a title and a legend to indicate what each shade
means, as shown in Figure 8-23.

Figure 8-23 ​ Finished world map

Over Space and Time
The examples so far enable you to visualize a lot of data types, whether it
be qualitative or quantitative. You can vary colors, categories, and symbols
to fit the story you’re trying to tell; annotate your maps to highlight specific
regions or features; and aggregate to zoom in on counties or countries.

O v er Spac e and T ime 303

But wait, there’s more! You don’t have to stop there. If you incorporate
another dimension of data, you can see changes over both time and space.

In Chapter 4, “Visualizing Patterns over Time,” you visualized time more
abstractly with lines and plots, which is useful, but when location is
attached to your data, it can be more intuitive to see the patterns and
changes with maps. It’s easier to see clustering or groups of regions that
are near in physical distance.

The best part is that you can incorporate what you’ve already learned to
visualize your data over space and time.

Small Multiples
You saw this technique in Chapter 6, “Visualizing Relationships,” to visual-
ize relationships across categories, and it can be applied to spatial data,
too, as shown in Figure 8-24. Instead of small bar graphs, you can use
small maps, one map for each slice of time. Line them up left to right or
stack them top to bottom, and it’s easy for your eyes to follow the changes.

Figure 8-24 ​ Small multiples with maps

For example, in late 2009, I designed a graphic that showed unemployment
rates by county (Figure 8-25). I actually used a variation of the code you
just saw in the previous section, but I applied it to several slices of time.

c h a P te r 8 : V is uali z ing Spatial Relati o ns h ips 304

Figure 8-25 ​ Unemployment rates from 2004 to 2009

It’s easy to see the changes, or lack thereof, by year, from 2004 through
2006, as shown in Figure 8-26. The national average actually went down
during that time.

Figure 8-26 ​ Unemployment rates 2004 to 2006

Then 2008 hits (Figure 8-27), and you start to see some of the increases
in the unemployment rate, especially in California, Oregon, and Michigan,
and some counties in the southeast.

O v er Spac e and T ime 305

Fast forward to 2009, and there is a clear difference, as shown in Fig-
ure 8-28. The national average increased 4 percentage points and the
county colors become very dark.

Figure 8-27 ​ Unemployment rates
in 2008

This was one of the most popular graphics I posted on FlowingData
because it’s easy to see that dramatic change after several years of rela-
tive standstill. I also used the OpenZoom Viewer, which enables you to
zoom in on high-resolution images, so you can focus on your own area to
see how it changed.

I could have also visualized the data as a time series plot, where each line
represented a county; however, there are more than 3,000 U.S. counties.
The plot would have felt cluttered, and unless it was interactive, you would
not be able to tell which line represented which county.

Take the Difference
You don’t always need to create multiple maps to show changes. Some-
times it makes more sense to visualize actual differences in a single map.
It saves space, and it highlights changes instead of single slices in time, as
shown in Figure 8-29.

P When high-res-
olution images are
too big to display
on a single moni-
tor, it can be useful
to put the image
in OpenZoom
Viewer (http://
openzoom.org)
so that you can
see the picture
and then zoom in
on the details.

Figure 8-28 ​ Unemployment rates during
September 2009

c h a P te r 8 : V is uali z ing Spatial Relati o ns h ips 306

Figure 8-29 ​ Focusing on change

If you were to download urban population counts from the World Bank,
you’d have similar data to the previous example using access to improved
water. Each row is a country, and each column is a year. However, the
urban population data is raw counts for an estimated number of people
in the country living in urban areas. A choropleth map of these counts
would inevitably highlight larger countries because they of course have
larger populations in general. Two maps to show the difference in urban
population between 2005 and 2009 wouldn’t be useful unless you changed
the values to proportions. To do that, you’d have to download population
data for 2005 and 2009 in all countries and then do some simple math. It’s
not all that hard to do that, but it’s an extra step. Plus, if the changes are
subtle, they’ll be hard to see across multiple maps.

Instead, you can take the difference and show it in a single map. You can
easily calculate this in Excel or modify the previous Python script, and
then make a single map, as shown in Figure 8-30.

It’s easy to see which countries changed the most and which ones changed
the least when you visualize the differences. In contrast, Figure 8-31
shows the proportion of each country’s total population that lived in an
urban area in 2005.

O v er Spac e and T ime 307

Figure 8-30 ​ Change in urban population from 2005 to 2009

Figure 8-31 ​ Proportion of people living in an urban area in 2005

Figure 8-32 shows the same data for 2009. It looks similar to Figure 8-31,
and you can barely notice a difference.

For this particular example, it’s clear that the single map is more informa-
tive. You have to do a lot less work mentally to decipher the changes. It’s
obvious that although many countries in Africa have a relatively lower per-
centage of their population living in urban areas compared to the rest of
the world, they have also changed the most in recent years.

c h a P te r 8 : V is uali z ing Spatial Relati o ns h ips 308

Figure 8-32 ​ Proportion of people living in an urban area in 2009

Remember to add a legend, source, and title if your graphic is for a wider
audience, as shown in Figure 8-33.

Figure 8-33 ​ Annotated map of differences

O v er Spac e and T ime 309

Animation
One of the more obvious ways to visualize changes over space and time
is to animate your data. Instead of showing slices in time with individual
maps, you can show the changes as they happen on a single interactive
map. This keeps the intuitiveness of the map, while allowing readers to
explore the data on their own.

A few years ago, I designed a map that shows the growth of Walmart across
the United States, as shown in Figure 8-34. The animation starts with the
fist store that opened in 1962 in Rogers, Arkansas, and then moves through
2010. For each new store that opened up, another dot appears on the map.
The growth is slow at first, and then Walmarts spread across the country
almost like a virus. It keeps growing and growing, with bursts in areas
where the company makes large acquisitions. Before you know it, Walmart
is everywhere.

Figure 8-34 ​ Animated map showing growth of Walmart stores

At the time, I was just trying to learn Flash and ActionScript, but the map
was shared across the web and has been viewed millions of times. I later
created a similar map showing the growth of Target (Figure 8-35), and it
was equally well spread.

P View the Wal-
mart map in its
entirety at http://
datafl.ws/197.

c h a P te r 8 : V is uali z ing Spatial Relati o ns h ips 310

Figure 8-35 ​ Animated map showing growth of Target stores

People have been so interested for two main reasons. The first is that
the animated map enables you to see patterns that you wouldn’t see with
a time series plot. A regular plot would show only the number of store
openings per year, which is fine if that’s the story you want to tell, but the
animated maps show growth that’s more organic, especially with the Wal-
mart one.

The second reason is that the map is immediately understandable to a
general audience. When the animation starts, you know what you’re see-
ing. I’m not saying there isn’t value in visualization that takes time to inter-
pret; it’s often the opposite. However, there’s a low time threshold for the
web, so because the map is intuitive (and that people can zoom in on their
own local areas) certainly helped the eager sharing.

Create an Animated Growth Map

In this example, you create the Walmart growth map in ActionScript. You
use Modest Maps, an ActionScript mapping library to provide interaction
and the base map. The rest you code yourself. Download the complete
source code at http://book.flowingdata.com/ch08/Openings_src.zip. Instead

P You can watch
the growth of
Target stores at
http://datafl

.ws/198.

P Download
Modest Maps
at http://­
modestmaps.com.

O v er Spac e and T ime 311

of going through every line and file, you’ll look at just the important bits in
this section.

As in Chapter 5, “Visualizing Proportions,” when you create a stacked
area chart with ActionScript and the Flare visualization toolkit, I highly
recommend you use Adobe Flex Builder. It makes ActionScript a lot easier
and keeps your code organized. You can of course still code everything in
a standard text editor, but Flex Builder wraps up the editor, debugging,
and compiling into one package. This example assumes you do have Flex
Builder, but you are of course welcome to grab an ActionScript 3 compiler
from the Adobe site.

To begin, open Flex Builder 3, and right-click the left sidebar, which shows
the current list of projects. Select Import, as shown in Figure 8-36.

Figure 8-36 ​ Import ActionScript project

Select Existing Projects Into Workspace, as shown in Figure 8-37.

Then, as shown in Figure 8-38, browse to the directory in which you saved
the code. The Openings project should appear after selecting the root
directory.

�
Adobe Flex
Builder was
recently changed
to Adobe Flash
Builder. There are
small differences
between the two,
but you can use
either.

note

P Download
the growth map
code in its entirety
at http://book
.flowingdata.com/

ch08/Openings_src

.zip to follow
along in this
example.

c h a P te r 8 : V is uali z ing Spatial Relati o ns h ips 312

Figure 8-37 ​E xisting project

Figure 8-38 ​ Import Openings project

O v er Spac e and T ime 313

Your workspace in Flex Builder should look similar to Figure 8-39.

Figure 8-39 ​ Workspace after importing project

All of the code is in the src folder. This includes Modest Maps in the com
folder and TweenFilterLite in the gs folder, which help with transitions.

With the Openings project imported, you’re ready to start building the
map. Do this in two parts. In the first part create an interactive base map.
In the second add the markers.

Add the Interactive Base Map

In Openings.as, the first lines of code import the necessary packages.

 import com.modestmaps.Map;

 import com.modestmaps.TweenMap;

 import com.modestmaps.core.MapExtent;

 import com.modestmaps.geo.Location;

 import com.modestmaps.mapproviders.OpenStreetMapProvider;

 import flash.display.Sprite;

 import flash.display.StageAlign;

 import flash.display.StageScaleMode;

c h a P te r 8 : V is uali z ing Spatial Relati o ns h ips 314

 import flash.events.Event;

 import flash.events.MouseEvent;

 import flash.filters.ColorMatrixFilter;

 import flash.geom.ColorTransform;

 import flash.text.TextField;

 import flash.net.*;

The first section imports classes from the Modest Maps package, whereas
the second section imports display objects and event classes provided by
Flash. The name of each class isn’t important right now. That becomes
clear as you use them. However, the naming pattern for the first section
matches the directory structure, starting with com, then modestmaps, and
ending with Map. This is how you import classes most of the time when you
write your own ActionScript.

Above public class Openings extends Sprite, several variables—width,
height, background color, and frame rate—of the compiled Flash file are
initialized.

 [SWF(width=”900”, height=”450”, backgroundColor=”#ffffff”,

frameRate=”32”)]

Then after the class declaration, you need to specify some variables and
initialize a Map object.

 private var stageWidth:Number = 900;

 private var stageHeight:Number = 450;

 private var map:Map;

 private var mapWidth:Number = stageWidth;

 private var mapHeight:Number = stageHeight;

In between the brackets of the Openings() function, you can now create
your first interactive map with Modest Maps.

 stage.scaleMode = StageScaleMode.NO_SCALE;

 stage.align = StageAlign.TOP_LEFT;

 // Initialize map

 map = new TweenMap(mapWidth, mapHeight, true, new

OpenStreetMapProvider());

 map.setExtent(new MapExtent(50.259381, 24.324408, -128.320313,

-59.941406));

 addChild(map);

O v er Spac e and T ime 315

Like in Illustrator, you can think of the full interactive as a bunch of layers.
In ActionScript and Flash, the first layer is the stage. You set it to not scale
objects when you zoom in on it, and you align the stage in the top left. Next
you initialize the map with the mapWidth and mapHeight that you specified in
the variables, turn on interaction, and use map tiles from OpenStreetMap.
By setting the map extent to the preceding code, you frame the map
around the United States.

The coordinates in MapExtent() are latitude and longitude which set the
bounding box for what areas of the world to show. The first and third num-
bers are latitude and longitude for the top left corner, and the second and
fourth numbers are latitude and longitude for the bottom right.

Finally, add the map (with addChild()) to the stage. Figure 8-40 shows the
result when you compile the code without adding any filters to the map.
You can either press the Play button in the top left of Flex Builder, or from
the main menu, you can select Run ➪ Run Openings.

Figure 8-40 ​ Plain map using OpenStreetMap tiles

When you run Openings, the result should pop up in your default browser.
There’s nothing on it yet, but you can click-and-drag, which is kind of cool.
Also if you prefer a different set of map tiles, you can use the Microsoft
road map (Figure 8-41) or Yahoo! hybrid map (Figure 8-42).

c h a P te r 8 : V is uali z ing Spatial Relati o ns h ips 316

Figure 8-41 ​ Plain map with Microsoft road map

Figure 8-42 ​ Plain map with Yahoo! hybrid map

You can also experiment with the colors of the map by applying filters.
You could for example, change the map to grayscale by placing the follow-
ing under the code you just wrote. The mat array is of length 20 and takes
values from 0 to 1. Each value represents how much red, green, blue and
alpha each pixel gets.

var mat:Array = [0.24688,0.48752,0.0656,0,44.7,0.24688,0.48752,

 0.0656,0,44.7,0.24688,0.48752,0.0656,0,44.7,0,0,0,1,0];

var colorMat:ColorMatrixFilter = new ColorMatrixFilter(mat);

map.grid.filters = [colorMat];

P You can also
use your own
tiles if you want.
There’s a good
tutorial on the
Modest Maps
site.

P See the Adobe
reference for more
on how to use col­
or matrices to cus­
tomize objects in
ActionScript at
http://livedocs

.adobe.com/flash/

9.0/ActionScript

LangRefV3/flash/

filters/Color

MatrixFilter

.html.

O v er Spac e and T ime 317

As shown in Figure 8-43, the map is all gray, which can be useful to high-
light the data that you plan to overlay on top of the map. The map serves
as background instead of battling for attention.

Figure 8-43 ​ Grayscale map after applying filter

You can also invert the colors with a color transform.

map.grid.transform.colorTransform =

 new ColorTransform(-1,-1,-1,1,255,255,255,0);

This turns white to black and black to white, as shown in Figure 8-44.

Figure 8-44 ​ Black and white map after inverting colors with transform

c h a P te r 8 : V is uali z ing Spatial Relati o ns h ips 318

To create zooming buttons, first write a function to make buttons. You’d
think that there would be a quick default way to do this by now, but it
still takes a handful of code to get the job done. The function definition of
makeButton() is at the bottom of the Openings class.

public function makeButton(clip:Sprite, name:String, labelText:String,

action:Function):Sprite

{

 var button:Sprite = new Sprite();

 button.name = name;

 clip.addChild(button);

 var label:TextField = new TextField();

 label.name = ‘label’;

 label.selectable = false;

 label.textColor = 0xffffff;

 label.text = labelText;

 label.width = label.textWidth + 4;

 label.height = label.textHeight + 3;

 button.addChild(label);

 button.graphics.moveTo(0, 0);

 button.graphics.beginFill(0xFDBB30, 1);

 button.graphics.drawRect(0, 0, label.width, label.height);

 button.graphics.endFill();

 button.addEventListener(MouseEvent.CLICK, action);

 button.useHandCursor = true;

 button.mouseChildren = false;

 button.buttonMode = true;

 return button;

}

Then create another function that makes use of the function and draws
the buttons you want. The following code creates two buttons using
makeButton()—one for zooming in and the other for zooming out. It puts
them at the bottom left of your map.

// Draw navigation buttons

private function drawNavigation():void

{

 // Navigation buttons (zooming)

O v er Spac e and T ime 319

 var buttons:Array = new Array();

 navButtons = new Sprite();

 addChild(navButtons);

 buttons.push(makeButton(navButtons, ‘plus’, ‘+’, map.zoomIn));

 buttons.push(makeButton(navButtons, ‘minus’, ‘–’, map.zoomOut));

 var nextX:Number = 0;

 for(var i:Number = 0; i < buttons.length; i++) {

 var currButton:Sprite = buttons[i];

 Sprite(buttons[i]).scaleX = 3;

 Sprite(buttons[i]).scaleY = 3;

 Sprite(buttons[i]).x = nextX;

 nextX += 3*Sprite(buttons[i]).getChildByName(‘label’).width;

 }

 navButtons.x = 2; navButtons.y = map.height-navButtons.height-2;

}

However, because it’s a function, the code won’t execute until you call it.
In the Openings() function, also known as the constructor, under the fil-
ters, add drawNavigation(). Now you can zoom in to locations of interest, as
shown in Figure 8-45.

Figure 8-45 ​ Map with zooming enabled

That’s all you need for the base map. You pick your tiles, set your vari-
ables, and enable interaction.

c h a P te r 8 : V is uali z ing Spatial Relati o ns h ips 320

Add the Markers

The next steps are to load the Walmart location data and create mark-
ers for each store opening. In the constructor, the following code loads
an XML file from a URL. When the file finishes loading, a function named
onLoadLocations() is called.

 var urlRequest:URLRequest =

 new URLRequest(‘http://projects.flowingdata.com/walmart/walmarts_

new.xml’);

 urlLoader = new URLLoader();

 urlLoader.addEventListener(Event.COMPLETE, onLoadLocations);

 urlLoader.load(urlRequest);

The obvious next step is to create the onLoadLocations() function. It reads
the XML file and stores the data in arrays for easier use later. Before you
do that though, you need to initialize a few more variables after navButtons.

private var urlLoader:URLLoader;

private var locations:Array = new Array();

private var openingDates:Array = new Array();

These variables are used in onLoadLocations(). Latitude and longitude
are stored in locations, and opening dates, in year format, are stored in
openingDates.

private function onLoadLocations(e:Event):void {

 var xml:XML = new XML(e.target.data);

 for each(var w:* in xml.walmart) {	

 locations.push(new Location(w.latitude, w.longitude));

 openingDates.push(String(w.opening_date));

 }

 markers = new MarkersClip(map, locations, openingDates);

 map.addChild(markers);

}

The next step is to create the MarkersClip class. Following the same
directory structure discussed earlier, there is a directory named flowing-
data in the com directory. A gps directory is in the flowingdata directory.
Finally, in com ➪ flowingdata ➪ gps is the MarkersClip class. This is the
container that will hold all the Walmart markers, or rather, the data layer
of your interactive map.

O v er Spac e and T ime 321

As before, you need to import the classes that you will use. Usually, you
add these as you need them in the code, but for the sake of simplicity, you
can add all of them at once.

 import com.modestmaps.Map;

 import com.modestmaps.events.MapEvent;

 import flash.display.Sprite;

 import flash.events.TimerEvent;

 import flash.geom.Point;

 import flash.utils.Timer;

The first two are from Modest Maps, whereas the last four are native
classes. Then you set variables right before the MarkersClip() function.
Again, you would add these as you need them, but you can add them all
now to get to the meat of this class—the functions.

 protected var map:Map; // Base map

 public var markers:Array; // Holder for markers

 public var isStationary:Boolean;

 public var locations:Array;

 private var openingDates:Array;

 private var storesPerYear:Array = new Array();

 private var spyIndex:Number = 0; // Stores per year index

 private var currentYearCount:Number = 0; // Stores shown so far

 private var currentRate:Number; // Number of stores to show

 private var totalTime:Number = 90000; // Approx. 1.5 minutes

 private var timePerYear:Number;

 public var currentYear:Number = 1962; // Start with initial year

 private var xpoints:Array = new Array(); // Transformed longitude

 private var ypoints:Array = new Array(); // Transformed latitude

 public var markerIndex:Number = 0;

 private var starting:Point;

 private var pause:Boolean = false;

 public var scaleZoom:Boolean = false;

c h a P te r 8 : V is uali z ing Spatial Relati o ns h ips 322

In the MarkersClip() constructor, store the variables that will be passed to
the class and compute a few things such as time per year and coordinates
for stores. You can think of this as the setup.

The storesPerYear variable stores how many stores opened during a given
year. For example, one store opened the first year, and no stores opened
the next. When you use this code with your own data, you need to update
storesPerYear appropriately. You could also write a function that com-
putes stores or location openings per year to increase the reusability of
your code. A hard-coded array is specified in this example for the sake of
simplicity.

 this.map = map;

 this.x = map.getWidth() / 2;

 this.y = map.getHeight() / 2;

 this.locations = locations;

 setPoints();

 setMarkers();

 this.openingDates = openingDates;

 var tempIndex:int = 0;

 storesPerYear = [1,0,1,1,0,2,5,5,5,15,17,19,25,19,27,

 39,34,43,54,150,63,87,99,110,121,142,125,131,178,

 163,138,156,107,129,53,60,66,80,105,106,114,96,

 130,118,37];

 timePerYear = totalTime / storesPerYear.length;

There are two other functions in the MarkersClip class: setPoints() and
setMarkers(). The first one translates latitude and longitude coordinates
to x- and y-coordinates, and the second function places the markers on
the map without actually showing them. Following is the definition for
setPoints(). It uses a built-in function provided by Modest Maps to calcu-
late x and y and then stores the new coordinates in xpoints and ypoints.

 public function setPoints():void {

 if (locations == null) {

 return;

 }

O v er Spac e and T ime 323

 var p:Point;

 for (var i:int = 0; i < locations.length; i++) {

 p = map.locationPoint(locations[i], this);

 xpoints[i] = p.x;

 ypoints[i] = p.y;

 }

 }

The second function, setMarkers(), uses the points that setPoints() stores
and places markers accordingly.

 protected function setMarkers():void

 {

 markers = new Array();

 for (var i:int = 0; i < locations.length; i++)

 {

 var marker:Marker = new Marker();

 addChild(marker);

 marker.x = xpoints[i]; marker.y = ypoints[i];

 markers.push(marker);

 }

 }

The function also uses a custom Marker class, which you can find in
com ➪ flowingdata ➪ gps ➪ Marker.as, assuming you have downloaded
the complete source code. It’s basically a holder, and when you call its
play() function, it “lights up.”

Now you have location and markers loaded on the map. However, if you
compiled the code now and played the file, you would still see a blank map.
The next step is to cycle through the markers to make them light up at the
right time.

The playNextStore() function simply calls play() of the next marker and
then gets ready to play the one after that. The startAnimation() and
onNextYear() functions use timers to incrementally display each store.

 private function playNextStore(e:TimerEvent):void

 {

 Marker(markers[markerIndex]).play();

 markerIndex++;

 }

c h a P te r 8 : V is uali z ing Spatial Relati o ns h ips 324

If you were to compile and run the animation now, you’d get dots, but it
doesn’t work with the map’s zoom and pan, as shown in Figure 8-46. As
you drag the map back and forth or zoom in and out, the bubbles for each
store are stationary.

Figure 8-46 ​ Growth map with incorrect pan and zoom

Listeners are added in the constructor so that the dots move whenever
the map moves. Whenever a MapEvent is triggered by Modest Maps, a cor-
responding function defined in MarkersClip.as is called. For example in
the first line below, onMapStartZooming() is called when a user clicks on the
map’s zoom button.

 this.map.addEventListener(MapEvent.START_ZOOMING,

 onMapStartZooming);

 this.map.addEventListener(MapEvent.STOP_ZOOMING,

 onMapStopZooming);

 this.map.addEventListener(MapEvent.ZOOMED_BY, onMapZoomedBy);

 this.map.addEventListener(MapEvent.START_PANNING,

 onMapStartPanning);

 this.map.addEventListener(MapEvent.STOP_PANNING,

 onMapStopPanning);

 this.map.addEventListener(MapEvent.PANNED, onMapPanned);

This gives you the final map, as shown in Figure 8-47.

W rapping Up 325

Figure 8-47 ​ Fully interactive growth map showing Wal-Mart openings

The story with Walmart store openings is the organic growth. The com-
pany started in a single location and slowly spread outward. Obviously,
this isn’t always the case. For example, Target’s growth doesn’t look so
calculated. Costco’s growth is less dramatic because there are fewer
locations, but its strategy seems to be growth on the coasts and then a
move inward.

In any case, it’s a fun and interesting way to view your data. The growth
maps seem to spur people’s imaginations, and they can wonder about the
spread of McDonald’s or Starbucks. Now that you have the code, it’s a lot
easier to implement. The hard part is finding the data.

Wrapping Up
Maps are a tricky visualization type because in addition to your own data,
you have to handle the dimension of geography. However, because of how
intuitive they are, maps can also be rewarding, both in how you can pre
sent data to others and how you can explore your data deeper than you
could with a statistical plot.

As seen from the examples in this chapter, there are a lot of possibilities
for what you can do with spatial data. With just a few basic skills, you can
visualize a lot of datasets and tell all sorts of interesting stories. This is

c h a P te r 8 : V is uali z ing Spatial Relati o ns h ips 326

just the tip of the iceberg. I mean, people go to college and beyond to earn
degrees in cartography and geography, so you can imagine what else is
out there. You can play with cartograms, which size geographic regions
according to a metric; add more interaction in Flash; or combine maps
with graphs for more detailed and exploratory views of your data.

Online maps have become especially prevalent, and their popularity is
only going to grow as browsers and tools advance. For the growth map
example, ActionScript and Flash were used, but it could have also been
implemented in JavaScript. Which tool you use depends on the purpose.
If it doesn’t matter what tool you use, then go with the one you’re more
comfortable with. The main thing, regardless of software, is the logic. The
syntax might change, but you do the same with your data, and you look for
the same flow in your storytelling.

